TRITERPENE GLYCOSIDES FROM *Astragalus* AND THEIR GENINS. LXXXI. CHEMICAL TRANSFORMATION OF CYCLOARTANES. VII. SYNTHESIS OF CYCLOSIVERSIGENIN LACTONE*

I. M. Isaev, D. A. Iskenderov, and M. I. Isaev*

UDC 547.918:547.926

The lactone 20R-25-norcycloartan- 3β , 6α , 16β -triol-20, 24-olide was synthesized from cyclosiversigenin.

Key words: *Astragalus*, Leguminosae, cycloartanes, cyclosiversigenin, cyclosiversigenin lactone, PMR, ¹³C, DEPT, ¹H–¹H COSY spectra.

We are continuing the chemical transformation of cycloartane methylsteroids and their glycosides [1].

Several cyclosiversigenin glycosides possess cardiotonic activity [2, 3]. Creation of a γ -lactone (butanolide) side chain in order to approximate the structure of cyclosiversioside F to those of cardenolides enhanced the cation-transport activity of cyclosiversioside F lactone compared with the starting glycoside [4]. Therefore, it seemed interesting to prepare a lactone from cyclosiversigenin, which was synthesized in three steps.

Cyclosiversigenin (1) was acetylated by acetic anhydride in Py. Column chromatography of the products separated previously produced tetra- (2), tri- (3), and di- (4) acetates of cyclosiversigenin, which were identified by direct comparison with authentic samples [5, 6]. Cyclosiversigenin triacetate (3) was oxidized by Jones reagent to produce a lactone ring in the side chain [7]. The oxidation product **5** was the 3,6,16-triacetate of cyclosiversigenin lactone according to the PMR spectrum (C_5D_5N), which exhibited resonances for three acetyls at δ 1.96, 1.98, and 2.02 and clearly resolved resonances of five methyls at 0.76, 0.88, 0.96, 1.08, and 1.36. The structure of **5** was also confirmed by the ¹³C NMR spectrum (Table 1) where resonances of C-25, C-26, and C-27 were missing and resonances for C-20 and C-24 were observed at 89.33 and 176.44, respectively, characteristic of a 20,24-olide.

2: $R = R_1 = Ac;$ **3, 7:** $R = Ac, R_1 = H;$ **4, 8:** $R = R_1 = H;$ **6:** $R = H, R_1 = Ac$

*Presented at the 1st International Symposium on Edible Plant Resources and the Bioactive Ingredients, Xinjiang, China, July 25-27, 2008.

S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax: (99871) 120 64 75, e-mail: m_isaev@rambler.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 324-327, May-June, 2009. Original article submitted November 24, 2008.

C atom	1 (CDCb ₃)	3 (CDCl ₃)	5 (CDCl ₃)	6 (CDCl ₃)	7 (CDCl ₃)	8 (CDCl ₃)	8 (C ₅ D ₅ N)
1	32.45	32.76	32.75	32.24	32.02	32.35	32.58
2	31.80	26.88 ^a	26.93 ^a	30.55	27.05	31.33	31.34
3	78.70	79.85	79.81	78.19	80.38	78.54	78.19
4	41.85	40.45	40.51	41.60	40.69	41.79	42.37
5	53.98	50.01	50.07	50.12	54.11	53.92	53.90
6	69.43	70.57	70.49	71.20	69.06	69.26	68.20
7	38.30	31.68	33.33	33.63	37.98	37.89	38.64
8	47.47	45.30	45.14	45.46	46.77	46.68	46.86
9	21.07	20.96	20.82	20.72	20.94	20.87	21.59
10	29.82	29.53	28.84	29.09	29.58	29.42	30.18
11	26.02	26.26	26.01	25.99	25.95	25.94	26.04
12	33.35	33.25	33.28	33.28	33.26	33.30	33.08
13	45.35	46.38	46.38	45.93	45.81	45.80	45.61 ^a
14	46.35	46.51	46.62	46.33	46.19	46.20	45.61^{a}
15	46.87	45.57	44.91	47.53	47.60	47.59	48.37
16	73.72	75.97	75.65	73.36	73.34	73.36	71.92
17	57.87	57.34	56.70	57.51	57.39	57.40	57.74
18	21.82	20.76	21.12	21.58	21.82	21.82	20.69
19	30.63	28.17	29.64	30.14	31.42	30.54	30.80
20	87.42	85.89	89.33	90.53	90.68	90.70	90.25
21	28.03	26.88 ^a	26.93 ^a	30.04	29.93	29.97	29.88
22	34.79	36.69	31.77	32.63	32.46	32.47	32.65
23	26.22	28.02	29.25	29.45	29.40	29.66	29.81
24	81.76	82.11	176.44	177.46	177.62	177.65	177.35
25	72.13	71.22	_	-	-	_	_
26	26.80	24.74	_	-	_	_	_
27	28.16	26.37	_	-	-	_	_
28	20.40	20.29	20.01	20.05	20.16	20.15	19.92
29	28.54	28.68	29.46	27.09	28.37	28.41	29.35
30	15.62	16.57	16.60	15.51	16.65	15.59	16.07
C-3-Ac	-	171.25	171.13	-	171.32	_	_
	-	21.90	21.56	_	21.65	_	_
C-6-Ac	-	170.98	170.73	170.75	-	-	_
	-	22.14	22.11	22.20	_	_	_
C-16-Ac	-	170.82	169.94	_	_	_	_
	—	21.61	21.38	-	—	—	_

TABLE 1. Chemical Shifts of C Atoms in 1, 3, and 5–8 (CDCl₃, C₅D₅N, δ, ppm)

^aResonances are mutually superimposed within columns.

Lactone **5** was subjected to alkaline hydrolysis with subsequent acidification of the reaction mixture in order to remove the protecting groups. Compounds **6-8** were isolated over a column after the usual work up and chromatography of the products.

The PMR spectrum of **6** exhibited a 3H singlet at δ 1.94 that was indicative of one acetyl in the molecule. The acetyl was located on C-6 because the resonance of H-6 underwent a low-field shift and was observed at 4.65. Product **6** was cyclosiversigenin lactone 6-monoacetate.

The PMR spectrum of 7 also contained a resonance for an acetyl but at 1.96. The appearance of the H-3 resonance at low field at 4.70 indicated that the acetyl was retained on C-3 in this product. Compound 7 was cyclosiversigenin lactone 3-monoacetate.

Compound **8** was the target product, i.e., cyclosiversigenin lactone completely freed of protecting groups, according to the PMR spectrum. As expected, the IR spectrum of **8** showed a strong absorption band for hydroxyls at 3380 cm⁻¹ and a strong absorption band at 1742 that was characteristic of a γ -lactone.

Thus, the lactone 20R-25-norcycloartan- 3β , 6α , 16β -triol-20, 24-olide was synthesized in three steps from cyclosiversigenin.

EXPERIMENTAL

General comments have been published [8]. PMR spectra were recorded on Tesla BS-567A (100 MHz, C_5D_5N , δ , ppm, 0 = HMDS), Bruker AM-300 (300 MHz, C_5D_5N , δ , ppm, 0 = TMS), and Unityplus 400 (400 MHz, CDCl₃, δ , ppm, 0 = HMDS) spectrometers; ¹³C NMR spectra, on Bruker AM-300 (75.5 MHz, C_5D_5N , δ , ppm) and Unityplus 400 (100 MHz, CDCl₃, δ , ppm) spectrometers with full C–H decoupling and under DEPT conditions. Chemical shifts of C atoms in the ¹³C NMR spectrum of **8** in C_5D_5N are given relative to the resonance of the β -C atoms of C_5D_5N , which have chemical shifts δ 123.493 relative to TMS. Chemical shifts of C atoms in ¹³C NMR spectra in CDCl₃ are given relative to the resonance of CDCl₃, which resonated at δ 77.36. ¹H—¹H COSY spectra in CDCl₃ were obtained on the Unityplus 400 spectrometer. IR spectra in KBr disks were recorded on a Bio-Rad FT-IR Spectrometer 165.

Cyclosiversigenin 3,6,16,25-Tetraacetate (2); 3,6,16-Triacetate (3); and 3,6-Diacetate (4) from 1. Cyclosiversigenin (1, 2 g) was acetylated by acetic anhydride (15 mL) in anhydrous Py (15 mL) for 9 d at room temperature, after which the reaction mixture was poured onto ice. The resulting precipitate was filtered off, washed with water, and dried. The products (2.395 g) were separated over a column of silica gel with elution by $CHCl_3:CH_3OH$ (50:1) to afford cyclosiversigenin tetraacetate (2, 0.2 g), which was identified by direct comparison with an authentic sample [6].

Further elution of the column by the same solvent system produced cyclosiversigenin triacetate (3, 1.510 g), mp 211-212°C (MeOH), the NMR spectra of which were identical to those of an authentic sample [5, 6].

PMR spectrum (400 MHz, CDCl₃, δ, ppm, J/Hz, 0 = HMDS): 0.31 and 0.53 (2H-19, d, ${}^{2}J = 4.7$), 0.78, 0.916, 0.921, 1.02, 1.14, 1.22, 1.23 (7 × CH₃, s), 1.93, 1.96, 1.99 (3 × CH₃COO, s), 2.42 (H-17, d, ${}^{3}J = 8$), 3.63 (H-24, dd, ${}^{3}J_{1} = 8.7$, ${}^{3}J_{2} = 7.2$), 4.51 (H-3, dd, ${}^{3}J_{1} = 11.4$, ${}^{3}J_{2} = 4.6$), 4.65 (H-6, td, ${}^{3}J_{1} = {}^{3}J_{2} = 9$, ${}^{3}J_{3} = 4$), 5.35 (H-16, td, ${}^{3}J_{1} = {}^{3}J_{2} = 8$, ${}^{3}J_{3} = 5.3$). Table 1 lists the ${}^{13}C$ NMR spectrum.

Continued elution of the column by the same solvent system isolated cyclosiversigenin diacetate (4, 0.453 g), mp 228-229°C (MeOH), which was identified by comparison with an authentic sample [5, 6]. The PMR and ¹³C NMR spectra have been published [1].

20R-25-Norcycloartan-3 β ,6 α ,16 β -triol-20,24-olide 3,6,16-Triacetate (5) from 3. Cyclosiversigenin triacetate (3, 1.013 g) in acetone (30 mL) was treated with Jones reagent (0.13 mL) [7], stirred for 25 min at room temperature (24°C), treated with several milliliters of MeOH to destroy the excess of oxidant, poured into water. and extracted with CHCl₃. The solid (0.977 g) resulting from the usual work up and evaporation of CHCl₃ was chromatographed over a column with elution by CHCl₃:CH₃OH (50:1) to afford 5 (710 mg), C₃₅H₄₈O₈, mp 181-183°C (MeOH).

PMR spectrum (100 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.22 and 0.43 (2H-19, d, ²J = 4), 0.76, 0.88, 0.96, 1.08, 1.36 (5 × CH₃, s), 1.96, 1.98, 2.02 (3 × CH₃COO, s), 2.57 (H-17, d, ³J = 7), 4.70 (H-3 and H-6, m), 5.38 (H-16, m).

PMR spectrum (400 MHz, CDCl₃, δ , ppm, J/Hz, 0 = HMDS): 0.32 (H-19, d, ²J = 4.9), 0.55 (H'-19, d, ²J = 4.7), 0.79, 0.92, 0.92, 1.22, 1.44 (5 × CH₃, s), 1.71 (H-5, d, ³J = 9.8), 1.93, 1.94, 1.99 (3 × CH₃COO, s), 2.55 (H-17, d, ³J = 8.6), 4.51 (H-3, dd, ³J₁ = 11.3, ³J₂ = 4.5), 4.65 (H-6, td, ³J₁ = ³J₂ = 9.2, ³J₃ = 4.5), 5.31 (H-16, td, ³J₁ = ³J₂ = 8, ³J₃ = 6.5). Table 1 lists the ¹³C NMR spectrum.

Alkaline Hydrolysis of Cyclosiversigenin Lactone Triacetate (5). A solution of 5 (530 mg) in MeOH (25 mL) was treated with a solution of NaOH (250 mg) in MeOH (25 mL), left at room temperature for 3 d, treated with conc. H_2SO_4 (1 mL), diluted after several minutes with water, and extracted with CHCl₃. The CHCl₃ extract was washed with water. The solvent was evaporated. The products (446 mg) were chromatographed over a column with elution by CHCl₃:CH₃OH (25:1) to afford monoacetate **6** (160 mg), $C_{29}H_{44}O_6$, mp 240-243°C (MeOH).

PMR spectrum (100 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.20 and 0.43 (2H-19, d, ²J = 4), 0.82, 1.04, 1.20, 1.20, 1.44 (5 × CH₃, s), 1.94 (CH₃COO, s), 2.42 (H-17, d, ³J = 8), 3.40 (H-3, m), 4.65 (H-6, m), 4.84 (H-16, m).

PMR spectrum (400 MHz, CDCl3, δ, ppm, J/Hz, 0 = HMDS): 0.32 and 0.54 (2H-19, d, ${}^{2}J = 4.7$), 0.86, 0.87, 0.94, 1.20, 1.44 (5 × CH₃, s), 1.61 (H-5, d, ${}^{3}J = 10$), 1.95 (CH₃COO, s), 2.36 (H-17, d, ${}^{3}J = 8.6$), 2.97 (H-22, dt, ${}^{2}J = 11.7$, ${}^{3}J_{1} = {}^{3}J_{2} = 10.5$), 3.23 (H-3, dd, ${}^{3}J_{1} = 11$, ${}^{3}J_{2} = 4.7$), 4.56 (H-16, q, ${}^{3}J_{1} = {}^{3}J_{2} = {}^{3}J_{3} = 7.6$), 4.68 (H-6, t, ${}^{3}J_{1} = {}^{3}J_{2} = 9.6$, ${}^{3}J_{3} = 4$). Table 1 lists the 13 C NMR spectrum.

Continued elution of the column by the same solvent system produced monoacetate 7 (24 mg), $C_{29}H_{44}O_6$, mp 259-260°C (MeOH).

PMR spectrum (100 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.20 and 0.47 (2H-19, d, ²J = 4), 0.81, 1.10, 1.28, 1.42, 1.42 (5 × CH₃, s), 1.96 (CH₃COO, s), 2.44 (H-17, d, ³J = 8), 3.58 (H-6, m), 4.70 (H-3, m), 4.80 (H-16, m).

PMR spectrum (400 MHz, CDCl₃, δ , ppm, J/Hz, 0 = HMDS): 0.33 and 0.49 (2H-19, d, ²J = 4.7), 0.89, 0.98, 1.07, 1.19, 1.45 (5 × CH₃, s), 2.00 (CH₃COO, s), 2.36 (H-17, d, ³J = 8.5), 3.47 (H-6, td, ³J₁ = ³J₂ = 9.7, ³J₃ = 3.5), 4.51 (H-3, dd, ³J₁ = 11.2, ³J₂ = 4.6), 4.57 (H-16, td, ³J₁ = ³J₂ = 8, ³J₃ = 6.7). Table 1 lists the ¹³C NMR spectrum.

Further elution of the column by the same solvent system produced lactone **8** (230 mg), $C_{27}H_{42}O_5$, mp 138-140°C (MeOH).

PMR spectrum (100 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.21 and 0.50 (2H-19, d, ²J = 4), 0.84, 1.20, 1.28, 1.42, 1.72 (5 × CH₃, s), 2.45 (H-17, d, ³J = 7), 3.44 (H-3, m), 3.56 (H-6, m), 4.70 (H-16, q, ³J₁ = ³J₂ = ³J₃ = 7).

PMR spectrum (300 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = TMS): 0.32 and 0.58 (2H-19, $d, {}^2J = 4$), 0.94, 1.35, 1.39, 1.52, 1.89 (5 × CH₃, s), 2.56 (H-17, d, {}^3J = 8.5), 3.37 (H-22, q, {}^2J = {}^3J_1 = {}^3J_2 = 10), 3.65 (H-3, dd, ${}^3J_1 = 11$, ${}^3J_2 = 4$), 3.77 (H-6, td, ${}^3J_1 = {}^3J_2 = 9$, ${}^3J_3 = 3$), 4.80 (H-16, q, ${}^3J_1 = {}^3J_2 = {}^3J_3 = 8.5$). Table 1 lists the ¹³C NMR spectrum.

PMR spectrum (400 MHz, CDCl3, δ , ppm, J/Hz, 0 = HMDS): 0.32 and 0.46 (2H-19, d, ²J = 4.4), 0.88, 0.90, 1.20, 1.20, 1.44 (5 × CH₃, s), 2.36 (H-17, d, ³J = 8.5), 3.25 (H-3, dd, ³J₁ = 11.2, ³J₂ = 4.4), 3.49 (H-6, td, ³J₁ = ³J₂ = 9.7, ³J₃ = 3.8), 4.57 (H-16, td, ³J₁ = ³J₂ = 8.2, ³J₃ = 6.8). Table 1 lists the ¹³C NMR spectrum.

IR spectrum (KBr, ν, cm⁻¹): 3380 (OH), 1742 (γ-lactone).

ACKNOWLEDGMENT

The work was supported financially by the FSBS AS RUz (Grant 68-08) and the State Foundation for Basic Research of the RUz (Grant FA-F3-T-044).

REFERENCES

- 1. I. M. Isaev, D. A. Iskenderov, and M. I. Isaev, Khim. Prir. Soedin., 591 (2008).
- 2. Jpn. Pat. No. 57,165,400, "Saponins from Astragali root;" Chem. Abstr., 98, 95652z (1983).
- 3. Z. A. Khushbaktova, M. A. Agzamova, V. N. Syrov, N. V. Radchenko, N. M. Mirsalikhova, and F. T. Umarova, *Khim. Prir. Soedin.*, 510 (1994).
- M. I. Isaev, M. A. Agzamova, Z. A. Khushbaktova, Yu. R. Mirzaev, V. N. Syrov, M. B. Gorovits, and N. K. Abubakirov, USSR Pat. Appl. 1,540,245, MKI³ A 61 K 31/585, C 07 J 17/00; *Otkrytiya, Izobreteniya*, No. 4, 286 (1990).
- 5. M. I. Isaev, M. B. Gorovits, N. D. Abdullaev, M. R. Yagudaev, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 572 (1981).
- 6. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 457 (2001).
- 7. C. Djerassi, R. R. Engle, and A. Bowers, J. Org. Chem., 21, 1547 (1956).
- 8. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 453 (2001).